DESCODIFICANDO O CÓDIGO DO CÂNCER

Revelando o Potencial dos RNAS Longos não Codificantes em Oncologia

Autores

DOI:

https://doi.org/10.61229/mpj.v2i1.32

Palavras-chave:

Câncer, lncRNA, Biomarcador

Resumo

A carcinogênese prevê 30 milhões de novos casos até 2040, tornando-se a segunda principal causa de morte global. No Brasil, as doenças neoplásicas resultaram em mais de 229.000 mortes em 2020, com previsão de 704.000 novos casos para cada ano do triênio 2023-2025. Fatores como tabagismo, estresse e predisposição genética influenciam a oncogênese. Intervenções em oncologia enfrentam desafios como resistência terapêutica e heterogeneidade tumoral. Cerca de 75% do genoma humano é composto por RNAs não codificadores (ncRNAs), com foco em longos ncRNAs. Anteriormente considerados 'lixo evolutivo', os lncRNAs regulam genes e afetam o câncer. LncRNAs nucleares impactam na arquitetura da cromatina, transcrição e processamento de RNA. Eles funcionam por meio de vias complexas, modulando oncogênicos e afetando resistência ao tratamento. Vários lncRNAs, incluindo MALAT1, ANRIL, HOTAIR, GAS5, MEG3 e H19, modulam vias oncológicas e influenciam processos celulares e resistência ao tratamento. Embora promissores como biomarcadores, a complexidade estrutural dos lncRNAs dificulta sua aplicação clínica.

Downloads

Não há dados estatísticos.

Biografia do Autor

Laurence Rodrigues do Amaral, Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, Patos de Minas, MG, Brazil

Laurence Rodrigues do Amaral é professor associado da Faculdade de Computação (FACOM) da Universidade Federal de Uberlândia (UFU), alocado em Patos de Minas - MG. Possui doutorado pelo PPGCC/UFSCar (área de Inteligência Artificial), mestrado pelo PPGCO/UFU (área de Inteligência Artificial) e bacharelado pela FACOM/UFU em Ciência da Computação, além de especialização em Biotecnologia pela Universidade Federal de Lavras (UFLA). Cursou pós-doutorado no Instituto René Rachou da Fiocruz Minas. É docente permanente no programa de pós-graduação em Ciência da Computação (PPGCO/UFU), área de Inteligência Artificial, orientando mestrado e doutorado. É docente permanente e atual coordenador no programa de pós-graduação em Biotecnologia (PPGBIOTEC/UFU), área de Bioinformática. É bolsista de produtividade em Desenvolvimento Tecnológico e Extensão Inovadora do CNPq, nível 2. Áreas de interesse: Inteligência Artificial, especialmente Algoritmos Genéticos, Aprendizado de Máquina, Data mining, Bioinformática e Robótica Evolutiva. Participou do sequênciamento mundial dos organismos Biomphalaria glabrata e Rhodnius prolixus. Colabora em projetos de pesquisa vinculados à National University of Ireland (Galway), Fiocruz, UFSCar, UFRJ, UFLA, UFOP, USP/Ribeirão Preto, UFAM, Unb, UFF, dentre outras. É revisor de artigos para os seguintes periódicos: IEEE Transactions on Neural Networks and Learning Systems, Bioinformatics (Oxford), Artificial Intelligence Review, Computers in Biology and Medicine, International Journal of Information Technology & Decision Making, dentre outros. É coordenador do Laboratório de Internet das Coisas e um dos responsáveis pelo Laboratório de Bioinformática e Análises Moleculares (LBAM) do INGEB/FACOM da Universidade Federal de Uberlândia - Campus Avançado Patos de Minas. 

Pedro Luiz Lima Bertarini, Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, Patos de Minas, MG, Brazil

Possui graduação em Engenharia Elétrica pela Universidade de São Paulo (2006) e doutorado em Engenharia Elétrica pela Universidade de São Paulo (2012). Realizou Pós Doutorado pela USP/São Carlos entre 2013 e 2014. Atualmente é professor e pesquisador da Faculdade de Engenharia Elétrica (FEELT) - Universidade Federal de Uberlândia (UFU), campus Patos de Minas. Tem experiência na área de Engenharia Elétrica, com ênfase em Telecomunicações. Seus interesses incluem modelagem de Sistemas de Telecomunicações, Metamateriais, Teoria da Informação e Codificação, Processamento Digital de Sinais, Internet das Coisas (IoT) e Inteligência Artificial. É coordenador do Laboratório de Tecnologias Urbanas e Rurais (LATUR) da FEELT/UFU no campus Patos de Minas.

Matheus de Souza Gomes, Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, Patos de Minas, MG, Brazil

Prof. Dr. Matheus de Souza Gomes é formado em Farmácia pela Universidade Federal de Ouro Preto (2005), tem Mestrado e Doutorado em Ciências Biológicas com ênfase em Biologia Molecular (2008) e estágio sanduíche na National University of Ireland - Galway - Laboratório de Genética e Biotecnologia - Centre for Chromosome Biology sob a supervisão do professor Dr. Charles Spillane. Foi professor de Bioquímica na Universidade Federal de Ouro Preto em 2011 e 2012. Atualmente é Professor Associado no Instituto de Biotecnologia e Assessor do Reitor na Universidade Federal de Uberlândia Campus Patos de Minas. Foi Coordenador do curso de Graduação em Biotecnologia entre 2012 e 2015 e Coordenador do Programa de Pós-graduação em Biotecnologia em 2016 e 2017 da mesma Instituição. É Professor permanente junto aos Programas de Pós-Graduação em Genética e Bioquímica (PPGGB - UFU) e Biotecnologia (PPGBIOTEC - UFU). Ministra disciplinas para a Graduação e Pós-graduação como Bioquímica Estrutural, Bioquímica Metabólica, Genética, Biologia Molecular e Bioinformática. Tem experiência nas áreas de Biologia Molecular, Bioinformática, Genética e Bioquímica. Atualmente é Pesquisador CNPq Nível 2 e Coordenador do Laboratório de Bioinformática e Análises Moleculares (LBAM) do Instituto de Biotecnologia da UFU Campus Patos de Minas.

Fábio Ribeiro Queiroz, Instituto de Inovação, Ensino e Pesquisa do Instituto Mário Penna

Biólogo, Mestre e Doutor em Ciências da Saúde pela Fundação Oswaldo Cruz - IRR/MG. Atualmente, desenvolve estágio Pós-doutoral em Pesquisa Translacional em Oncologia no Instituto Mário Penna de Ensino, Pesquisa e Inovação - IEPI. É responsável pelas Plataformas de Sequenciamento de Nova Geração e Bioinformática, atuando no transcritoma de pequenos RNAs, expressão gênica e análise de dados de sequenciamento. Possui experiência nas áreas de bioinformática, genética, biologia molecular, cultivo celular, citometria de fluxo e parasitologia molecular. Além disso, possui mais de doze anos de experiência como docente na rede estadual de educação. Foi vice-diretor na Escola Estadual Dom Cabral e atualmente é professor nesta mesma instituição. É professor no curso de pós-graduação em Bioinformática Aplicada à Saúde na PUC Minas.

Leticia da Conceição Braga , Instituto de Inovação, Ensino e Pesquisa do Instituto Mário Penna

Bióloga, mestre em Genética pela Universidade Federal de Minas Gerais, Doutora em Ciências da Saúde pela Faculdade de Medicina de Botucatu/UNESP e Pós-Doutora em Drug Discovery em Oncologia. MBA em Gestão de Negócios pela USP-ESALQ. Co-fundadora da startup OncoTag. Com sua experiência tem batalhado em prol do desenvolvimento do empreendedorismo científico e inovação no Brasil. Atualmente é coordenadora do Laboratório de Pesquisa Básica e Translacional do Instituto Mário Penna, atuando nas linhas de pesquisa em Oncologia de precisão e medicina translacional, com ênfase nos seguintes temas: genômica e transcriptômica tumoral, análises bioinformáticas de sequências de DNA e RNA e análise de expressão gênica diferencial e sinalização relacionadas à fatores prognósticos e preditivos do tratamento radioquimioterápico. Docente credenciada como colaboradora voluntária da Pós-graduação em Ciências Morfofuncionais da UFSJ e Genética da UFMG. Recebeu vários prêmios e menções honrosas como cientista e empreendedora, dentre eles destacam-se: II Prêmio Fleury de Inovação, Destaque no Demoday InovAtiva Brasil, Prêmio Carlos Ribeiro Diniz (Funed), Mérito Docente UNA e Prêmio Francisco Mauro Salsano - Genética humana. Membro Allied Doctoral Scientist da Sociedade Americana de Oncologia (ASCO) e membro Grupo Brasileiro de Tumores Ginecológicos EVA.

Referências

World Health Organization. Cancer [Internet]. Geneva: WHO; c2023. Available from: https://www.who.int/health-topics/cancer.

Pan American Health Organization. World Cancer Day 2023: Close the care gap [Internet]. Washington, D.C: PAHO; c2023. Available from: https://www.paho.org/en/campaigns/world-cancer-day-2023-close-care-gap.

International Agency For Research On Cancer. Cancer tomorrow: Estimated number of new cases from 2020 to 2040, Both sexes, age [0-85+] All cancers [Internet]. Lyon: IARC; c2023. Available from: https://gco.iarc.fr/tomorrow/en/dataviz/isotype.

Santos M de O, Lima FC da S de, Martins LFL, Oliveira JFP, Almeida LM de, Cancela M de C. Estimativa de Incidência de Câncer no Brasil, 2023-2025. Revista Brasileira de Cancerologia. 2023;69(1). https://doi.org/10.32635/2176-9745.RBC.2023v69n1.3700. DOI: https://doi.org/10.32635/2176-9745.RBC.2023v69n1.3700

Datasus. Mortalidade geral [Internet]. Brasil: Ministério da Saúde; c2023. Available from: http://tabnet.datasus.gov.br/cgi/tabcgi.exe?sim/cnv/obt10uf.def.

Bahrami H, Tafrihi M. Global trends of cancer: The role of diet, lifestyle, and environmental factors. Cancer Innovation. 2023;2(4):290–301. https://doi.org/10.1002/cai2.76. DOI: https://doi.org/10.1002/cai2.76

Belpomme D, Irigaray P, Sasco A, Newby J, Howard V, Clapp R, et al. The growing incidence of cancer: Role of lifestyle and screening detection (Review). International Journal of Oncology. 2007;30(5). https://doi.org/10.3892/ijo.30.5.1037. DOI: https://doi.org/10.3892/ijo.30.5.1037

Underhill ML, Habin KR, Shannon KM. Perceptions of Cancer Risk, Cause, and Needs in Participants from Low Socioeconomic Background at Risk for Hereditary Cancer. Behavioral Medicine. 2016;43(4):259–67. https://doi.org/10.1080/08964289.2016.1138925. DOI: https://doi.org/10.1080/08964289.2016.1138925

Debela DT, Muzazu SG, Heraro KD, Ndalama MT, Mesele BW, Haile DC, et al. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Medicine. 2021;9:1–10. https://doi.org/10.1177/20503121211034366. DOI: https://doi.org/10.1177/20503121211034366

Mayo Clinic. Cancer treatment [Internet]. Rochester: Mayo Clinic, c2022. Available from: https://www.mayoclinic.org/tests-procedures/cancer-treatment/about/pac-20393344.

Yildizhan H, Barkan NP, Karahisar Turan S, Demiralp Ö, Özel Demiralp FD, Uslu B, et al. Chapter 1 - Treatment strategies in cancer from past to present. In Grumezescu AM, editor. Drug Targeting and Stimuli Sensitive Drug Delivery Systems [Internet]. William Andrew Publishing; 2018. p. 1–37, Elsevier. http://dx.doi.org/10.1016/B978-0-12-813689-8.00001-X. DOI: https://doi.org/10.1016/B978-0-12-813689-8.00001-X

Sant’ Anna C de C, Junior AGF, Soares P, Tuji F, Paschoal E, Chaves LC, et al. Molecular biology as a tool for the treatment of cancer. Clinical and Experimental Medicine. 2018;18(4):457–64. https://doi.org/10.1007/s10238-018-0518-1. DOI: https://doi.org/10.1007/s10238-018-0518-1

Weir J. Dissecting cancer complexity across space and time [Internet]. Science in the News (Harvard University). 2022. Available from: https://sitn.hms.harvard.edu/flash/2022/dissecting-cancer-complexity-across-space-and-time/

Maffuid K, Cao Y. Decoding the Complexity of Immune–Cancer Cell Interactions: Empowering the Future of Cancer Immunotherapy. Cancers. 2023;15(16):4188–8. https://doi.org/10.3390/cancers15164188. DOI: https://doi.org/10.3390/cancers15164188

Janku F. Tumor heterogeneity in the clinic: is it a real problem? Therapeutic Advances in Medical Oncology. 2013;6(2):43–51. https://doi.org/10.1177/1758834013517414. DOI: https://doi.org/10.1177/1758834013517414

Piraino SW, Thomas V, O’Donovan P, Furney SJ. Mutations: Driver Versus Passenger. In: Boffetta P, Hainaut P, editors. Encyclopedia of Cancer (Third Edition). Academic Press; 2019. p. 551–62. http://dx.doi.org/10.1016/B978-0-12-801238-3.65045-6. DOI: https://doi.org/10.1016/B978-0-12-801238-3.65045-6

Fisher R, Pusztai L, Swanton C. Cancer heterogeneity: Implications for Targeted Therapeutics. British Journal of Cancer. 2013;108(3):479–85. https://doi.org/10.1038/bjc.2012.581. DOI: https://doi.org/10.1038/bjc.2012.581

Hassanpour SH, Dehghani M. Review of cancer from perspective of molecular. Journal of Cancer Research and Practice. 2017;4(4):127–9. https://doi.org/10.1016/j.jcrpr.2017.07.001. DOI: https://doi.org/10.1016/j.jcrpr.2017.07.001

Huarte M. The emerging role of lncRNAs in cancer. Nature Medicine. 2015;21(11):1253–61. https://doi.org/10.1038/nm.3981. DOI: https://doi.org/10.1038/nm.3981

Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nature Reviews Clinical Oncology. 2017;15(2):81–94. https://doi.org/10.1038/nrclinonc.2017.166. DOI: https://doi.org/10.1038/nrclinonc.2017.166

Illumina Technology. Cancer Research Review: An Overview of Recent Cancer Research Publications Featuring Illumina® Technology [Internet]. c2023. Available from: https://www.illumina.com/content/dam/illumina-marketing/documents/products/research_reviews/cancer_research_review.pdf.

Frankish A, Carbonell-Sala S, Diekhans M, Jungreis I, Loveland J, Mudge J, et al. GENCODE: reference annotation for the human and mouse genomes in 2023. Nucleic Acids Research. 2022;51(D1):D942–9. https://doi.org/10.1093/nar/gkac1071. DOI: https://doi.org/10.1093/nar/gkac1071

Ahmad M, Weiswald L, Poulain L, Denoyelle C, Meryet-Figuière M. Involvement of lncRNAs in cancer cells migration, invasion and metastasis: cytoskeleton and ECM crosstalk. Journal of Experimental & Clinical Cancer Research. 2023;42(1). https://doi.org/10.1186/s13046-023-02741-x. DOI: https://doi.org/10.1186/s13046-023-02741-x

West KA, Lagos D. Long Non-Coding RNA Function in CD4+ T Cells: What We Know and What Next? Non-Coding RNA. 2019;5(3):43. https://doi.org/10.3390/ncrna5030043. DOI: https://doi.org/10.3390/ncrna5030043

Zhang R, Li X, Lu W, Zhang J, Zhu J. LncRNAs and cancer. Oncology Letters. 2016;12(2):1233–9. https://doi.org/10.3892/ol.2016.4770. DOI: https://doi.org/10.3892/ol.2016.4770

Dahariya S, Paddibhatla I, Kumar S, Raghuwanshi S, Pallepati A, Gutti RK. Long non-coding RNA: Classification, biogenesis and functions in blood cells. Molecular Immunology. 2019;112:82–92. https://doi.org/10.1016/j.molimm.2019.04.011. DOI: https://doi.org/10.1016/j.molimm.2019.04.011

Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nature Reviews Molecular Cell Biology. 2021;22(2):96–118. https://doi.org/10.1038/s41580-020-00315-9. DOI: https://doi.org/10.1038/s41580-020-00315-9

Choudhuri Supratim. Long noncoding RNAs: biogenesis, regulation, function, and their emerging significance in toxicology. Toxicology Mechanisms and Methods. 2023;1–11. https://doi.org/10.1080/15376516.2023.2197489. DOI: https://doi.org/10.1080/15376516.2023.2197489

Li G, Deng L, Huang N, Sun F. The Biological Roles of lncRNAs and Future Prospects in Clinical Application. Diseases. 2021;9(1):8. https://doi.org/10.3390/diseases9010008. DOI: https://doi.org/10.3390/diseases9010008

Rai MI, Alam M, Lightfoot DA, Gurha P, Afzal AJ. Classification and experimental identification of plant long non-coding RNAs. Genomics. 2019;111(5):997–1005. https://doi.org/10.1016/j.ygeno.2018.04.014. DOI: https://doi.org/10.1016/j.ygeno.2018.04.014

Li W, Wang YY, Xiao L, Ding J, Wang L, Wang R, et al. Mysterious long noncoding RNAs and their relationships to human disease. Frontiers in Molecular Biosciences. 2022;9. https://doi.org/10.3389/fmolb.2022.950408. DOI: https://doi.org/10.3389/fmolb.2022.950408

Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA biology. 2013;10(6):925–33. https://doi.org/10.4161/rna.24604. DOI: https://doi.org/10.4161/rna.24604

Joshi M, Rajender S. Long non-coding RNAs (lncRNAs) in spermatogenesis and male infertility. Reproductive Biology and Endocrinology. 2020;18(1). https://doi.org/10.1186/s12958-020-00660-6. DOI: https://doi.org/10.1186/s12958-020-00660-6

Sun Q, Hao Q, Prasanth KV. Nuclear Long Noncoding RNAs: Key Regulators of Gene Expression. Trends in Genetics. 2018;34(2):142–57. https://doi.org/10.1016/j.tig.2017.11.005. DOI: https://doi.org/10.1016/j.tig.2017.11.005

Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends in Cell Biology. 2011;21(6):354–61. https://doi.org/10.1016/j.tcb.2011.04.001. DOI: https://doi.org/10.1016/j.tcb.2011.04.001

Schmitz SU, Grote P, Herrmann BG. Mechanisms of long noncoding RNA function in development and disease. Cellular and Molecular Life Sciences. 2016;73(13):2491–509. https://doi.org/10.1007/s00018-016-2174-5. DOI: https://doi.org/10.1007/s00018-016-2174-5

Jayasuriya R, Ganesan K, Xu B, Ramkumar KM. Emerging role of long non-coding RNAs in endothelial dysfunction and their molecular mechanisms. Biomedicine & Pharmacotherapy. 2022;145:112421. https://doi.org/10.1016/j.biopha.2021.112421. DOI: https://doi.org/10.1016/j.biopha.2021.112421

Marchese FP, Raimondi I, Huarte M. The multidimensional mechanisms of long noncoding RNA function. Genome Biology. 2017;18(1). https://doi.org/10.1186/s13059-017-1348-2. DOI: https://doi.org/10.1186/s13059-017-1348-2

Gao N, Li Y, Li J, Gao Z, Yang Z, Li Y, et al. Long Non-Coding RNAs: The Regulatory Mechanisms, Research Strategies, and Future Directions in Cancers. Frontiers in Oncology. 2020;10. https://doi.org/10.3389/fonc.2020.598817. DOI: https://doi.org/10.3389/fonc.2020.598817

Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nature Reviews Genetics. 2015;17(1):47–62. https://doi.org/10.1038/nrg.2015.10. DOI: https://doi.org/10.1038/nrg.2015.10

Wang Kevin C, Chang Howard Y. Molecular Mechanisms of Long Noncoding RNAs. Molecular Cell. 2011;43(6):904–14. https://doi.org/10.1016/j.molcel.2011.08.018. DOI: https://doi.org/10.1016/j.molcel.2011.08.018

Balas MM, Johnson AM. Exploring the mechanisms behind long noncoding RNAs and cancer. Non-coding RNA Research. 2018;3(3):108–17. https://doi.org/10.1016/j.ncrna.2018.03.001. DOI: https://doi.org/10.1016/j.ncrna.2018.03.001

Hermans-Beijnsberger S, van Bilsen M, Schroen B. Long non-coding RNAs in the failing heart and vasculature. Non-coding RNA Research. 2018;3(3):118–30. https://doi.org/10.1016/j.ncrna.2018.04.002. DOI: https://doi.org/10.1016/j.ncrna.2018.04.002

Yu X, Zhe Z, Tang B, Li S, Tang L, Wu Y, et al. α-Asarone suppresses the proliferation and migration of ASMCs through targeting the lncRNA-PVT1/miR-203a/E2F3 signal pathway in RSV-infected rats. Acta Biochimica et Biophysica Sinica [Internet]. 2017;49(7):598–608. https://doi.org/10.1093/abbs/gmx048. DOI: https://doi.org/10.1093/abbs/gmx048

Wang J, He Z, Xu J, Chen P, Jiang J. Long noncoding RNA LINC00941 promotes pancreatic cancer progression by competitively binding miR-335-5p to regulate ROCK1-mediated LIMK1/Cofilin-1 signaling. Cell Death & Disease. 2021;12(1):1–15. https://doi.org/10.1038/s41419-020-03316-w. DOI: https://doi.org/10.1038/s41419-020-03316-w

Wu Z, Liu X, Liu L, Deng H, Zhang J, Xu Q, et al. Regulation of lncRNA expression. Cellular and Molecular Biology Letters. 2014;19(4). https://doi.org/10.2478/s11658-014-0212-6. DOI: https://doi.org/10.2478/s11658-014-0212-6

Wang C, Wang L, Ding Y, Lu X, Zhang G, Yang J, et al. LncRNA Structural Characteristics in Epigenetic Regulation. International Journal of Molecular Sciences. 2017;18(12). https://doi.org/10.3390/ijms18122659. DOI: https://doi.org/10.3390/ijms18122659

Zhang X, Wang W, Zhu W, Dong J, Cheng Y, Yin Z, et al. Mechanisms and Functions of Long Non-Coding RNAs at Multiple Regulatory Levels. International Journal of Molecular Sciences. 2019;20(22). https://doi.org/10.3390/ijms20225573. DOI: https://doi.org/10.3390/ijms20225573

Dykes IM, Emanueli C. Transcriptional and Post-transcriptional Gene Regulation by Long Non-coding RNA. Genomics, Proteomics & Bioinformatics. 2017;15(3):177–86. https://doi.org/10.1016/j.gpb.2016.12.005. DOI: https://doi.org/10.1016/j.gpb.2016.12.005

Zhang X, Hamblin MH, Yin KJ. The long noncoding RNA Malat1: Its physiological and pathophysiological functions. RNA Biology. 2017;14(12):1705–14. https://doi.org/10.1080%2F15476286.2017.1358347. DOI: https://doi.org/10.1080/15476286.2017.1358347

Kazimierczyk M, Kasprowicz MK, Kasprzyk ME, Wrzesinski J. Human Long Noncoding RNA Interactome: Detection, Characterization and Function. International Journal of Molecular Sciences. 2020;21(3):1027. https://doi.org/10.3390/ijms21031027. DOI: https://doi.org/10.3390/ijms21031027

Zhao Z, Sun W, Guo Z, Zhang J, Yu H, Liu B. Mechanisms of lncRNA/microRNA interactions in angiogenesis. Life Sciences. 2020;254:116900. https://doi.org/10.1016/j.lfs.2019.116900. DOI: https://doi.org/10.1016/j.lfs.2019.116900

Sebastian-delaCruz M, Gonzalez-Moro I, Olazagoitia-Garmendia A, Castellanos-Rubio A, Santin I. The Role of lncRNAs in Gene Expression Regulation through mRNA Stabilization. Non-Coding RNA. 2021;7(1):3. https://doi.org/10.3390%2Fncrna7010003. DOI: https://doi.org/10.3390/ncrna7010003

Fort V, Khelifi G, Hussein SMI. Long non-coding RNAs and transposable elements: A functional relationship. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2021;1868(1):118837. https://doi.org/10.1016/j.bbamcr.2020.118837. DOI: https://doi.org/10.1016/j.bbamcr.2020.118837

Ranjbar M, Heydarzadeh S, Khaniani MS, Foruzandeh Z, Seif F, Pornour M, et al. Mutual interaction of lncRNAs and epigenetics: focusing on cancer. Egyptian Journal of Medical Human Genetics. 2023;24(1). https://doi.org/10.1186/s43042-023-00404-2. DOI: https://doi.org/10.1186/s43042-023-00404-2

Begolli R, Sideris N, Giakountis A. LncRNAs as Chromatin Regulators in Cancer: From Molecular Function to Clinical Potential. Cancers. 2019;11(10):1524. https://doi.org/10.3390%2Fcancers11101524. DOI: https://doi.org/10.3390/cancers11101524

Qiu MT, Hu JW, Yin R, Xu L. Long noncoding RNA: an emerging paradigm of cancer research. Tumor Biology. 2013;34(2):613–20. https://doi.org/10.1007/s13277-013-0658-6. DOI: https://doi.org/10.1007/s13277-013-0658-6

Shah IM, Dar MA, Bhat KA, Dar TA, Ahmad F, Ahmad SM. Long Non-Coding RNAs: Biogenesis, Mechanism of Action and Role in Different Biological and Pathological Processes. In: Tutar L, editor. Recent Advances in Noncoding RNAs [Internet]. IntechOpen; 2022. p. 236. https://doi.org/10.5772/intechopen.104861. DOI: https://doi.org/10.5772/intechopen.104861

Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduction and Targeted Therapy [Internet]. 2020;5(1). https://doi.org/10.1038/s41392-020-0134-x. DOI: https://doi.org/10.1038/s41392-020-0134-x

Dzobo K, Senthebane DA, Dandara C. The Tumor Microenvironment in Tumorigenesis and Therapy Resistance Revisited. Cancers [Internet]. 2023;15(2):376. https://doi.org/10.3390/cancers15020376. DOI: https://doi.org/10.3390/cancers15020376

Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discovery [Internet]. 2022;12(1):31–46. https://doi.org/10.1158/2159-8290.cd-21-1059. DOI: https://doi.org/10.1158/2159-8290.CD-21-1059

Bhan A, Soleimani M, Mandal SS. Long Noncoding RNA and Cancer: A New Paradigm. Cancer Research. 2017;77(15):3965–81. https://doi.org/10.1158/0008-5472.can-16-2634. DOI: https://doi.org/10.1158/0008-5472.CAN-16-2634

Esposito R, Lanzós A, Uroda T, Ramnarayanan S, Büchi I, Polidori T, et al. Tumour mutations in long noncoding RNAs enhance cell fitness. Nature Communications. 2023;14(1). https://doi.org/10.1038/s41467-023-39160-7. DOI: https://doi.org/10.1038/s41467-023-39160-7

Smolarz B, Zadrożna-Nowak A, Romanowicz H. The Role of lncRNA in the Development of Tumors, including Breast Cancer. International Journal of Molecular Sciences. 2021;22(16):8427. https://doi.org/10.3390%2Fijms22168427. DOI: https://doi.org/10.3390/ijms22168427

Arratia F, Fierro C, Blanco A, Fuentes S, Nahuelquen D, Montecino M, et al. Selective Concurrence of the Long Non-Coding RNA MALAT1 and the Polycomb Repressive Complex 2 to Promoter Regions of Active Genes in MCF7 Breast Cancer Cells. Current Issues in Molecular Biology [Internet]. 2023;45(6):4735–48. https://doi.org/10.3390/cimb45060301. DOI: https://doi.org/10.3390/cimb45060301

Yoon JH, Abdelmohsen K, Gorospe M. Posttranscriptional Gene Regulation by Long Noncoding RNA. Journal of Molecular Biology [Internet]. 2013;425(19):3723–30. https://doi.org/10.1016/j.jmb.2012.11.024. DOI: https://doi.org/10.1016/j.jmb.2012.11.024

Li ZX, Zhu QN, Zhang HB, Hu Y, Wang G, Zhu YS. MALAT1: a potential biomarker in cancer. Cancer Management and Research. 2018;10:6757–68. https://doi.org/10.2147/cmar.s169406. DOI: https://doi.org/10.2147/CMAR.S169406

Zhao M, Wang S, Li Q, Ji Q, Guo P, Liu X. MALAT1: A long non coding RNA highly associated with human cancers (Review). Oncology Letters. 2018;16(1). https://doi.org/10.3892%2Fol.2018.8613. DOI: https://doi.org/10.3892/ol.2018.8613

Kong Y, Hsieh CH, Alonso LC. ANRIL: A lncRNA at the CDKN2A/B Locus With Roles in Cancer and Metabolic Disease. Frontiers in Endocrinology. 2018;9. https://doi.org/10.3389/fendo.2018.00405. DOI: https://doi.org/10.3389/fendo.2018.00405

Hajjari M, Salavaty A. HOTAIR: an oncogenic long non-coding RNA in different cancers. Cancer Biology & Medicine. 2015;12(1):1–9. https://doi.org/10.7497%2Fj.issn.2095-3941.2015.0006.

Kaur J, Salehen N, Norazit A, Rahman AA, Murad NAA, Rahman NMANAbd, et al. Tumor Suppressive Effects of GAS5 in Cancer Cells. Non-Coding RNA. 2022;8(3):39. https://doi.org/10.3390%2Fncrna8030039. DOI: https://doi.org/10.3390/ncrna8030039

Yang X, Xie Z, Lei X, Gan R. Long non coding RNA GAS5 in human cancer (Review). Oncology Letters. 2020;20(3):2587–94. https://doi.org/10.3892%2Fol.2020.11809. DOI: https://doi.org/10.3892/ol.2020.11809

He Y, Luo Y, Liang B, Ye L, Lu G, He W. Potential applications of MEG3 in cancer diagnosis and prognosis. Oncotarget. 2017;8(42):73282–95. https://doi.org/10.18632%2Foncotarget.19931. DOI: https://doi.org/10.18632/oncotarget.19931

Zhang Z, Shi S, Li J, Costa M. Long Non-Coding RNA MEG3 in Metal Carcinogenesis. Toxics. 2023;11(2):157–7. https://doi.org/10.3390/toxics11020157. DOI: https://doi.org/10.3390/toxics11020157

Ghafouri-Fard S, Esmaeili M, Taheri M. H19 lncRNA: Roles in tumorigenesis. Biomedicine & Pharmacotherapy. 2020;123:109774. https://doi.org/10.1016/j.biopha.2019.109774. DOI: https://doi.org/10.1016/j.biopha.2019.109774

Yang J, Qi M, Fei X, Wang X, Wang K. LncRNA H19: A novel oncogene in multiple cancers. International Journal of Biological Sciences. 2021;17(12):3188–208. https://doi.org/10.7150%2Fijbs.62573. DOI: https://doi.org/10.7150/ijbs.62573

Xu M, Qi P, Du X. Long non-coding RNAs in colorectal cancer: implications for pathogenesis and clinical application. Modern Pathology. 2014;27(10):1310–20. https://doi.org/10.1038/modpathol.2014.33. DOI: https://doi.org/10.1038/modpathol.2014.33

Qian Y, Shi L, Luo Z. Long Non-coding RNAs in Cancer: Implications for Diagnosis, Prognosis, and Therapy. Frontiers in Medicine. 2020;7. https://doi.org/10.3389/fmed.2020.612393. DOI: https://doi.org/10.3389/fmed.2020.612393

Chao X, Wang P, Ma X, Li Z, Xia Y, Guo Y, et al. Comprehensive analysis of lncRNAs as biomarkers for diagnosis, prognosis, and treatment response in clear cell renal cell carcinoma. Molecular Therapy - Oncolytics. 2021;22:209–18. https://doi.org/10.1016%2Fj.omto.2021.08.003. DOI: https://doi.org/10.1016/j.omto.2021.08.003

Wang J, Sun J, Yang F. The role of long non coding RNA H19 in breast cancer (Review). Oncology Letters. 2019;19(1). https://doi.org/10.3892%2Fol.2019.11093. DOI: https://doi.org/10.3892/ol.2019.11093

Quan J, Pan X, Zhao L, Li Z, Dai K, Yan F, et al. LncRNA as a diagnostic and prognostic biomarker in bladder cancer: a systematic review and meta-analysis. OncoTargets and Therapy. 2018;11:6415–24. https://doi.org/10.2147/ott.s167853. DOI: https://doi.org/10.2147/OTT.S167853

Arun G, Diermeier SD, Spector DL. Therapeutic Targeting of Long Non-Coding RNAs in Cancer. Trends in Molecular Medicine. 2018;24(3):257–77. https://doi.org/10.1016/j.molmed.2018.01.001. DOI: https://doi.org/10.1016/j.molmed.2018.01.001

Alzhrani R, Alsaab HO, Petrovici A, Bhise K, Vanamala K, Sau S, et al. Improving the therapeutic efficiency of noncoding RNAs in cancers using targeted drug delivery systems. Drug Discovery Today. 2020;25(4):718–30. https://doi.org/10.1016%2Fj.drudis.2019.11.006. DOI: https://doi.org/10.1016/j.drudis.2019.11.006

Amit D, Hochberg A. Development of targeted therapy for bladder cancer mediated by a double promoter plasmid expressing diphtheria toxin under the control of H19 and IGF2-P4 regulatory sequences. Journal of Translational Medicine. 2010;8(1). https://doi.org/10.1186/1479-5876-8-134. DOI: https://doi.org/10.1186/1479-5876-8-134

Hueso M, Mallén A, Suñé-Pou M, Aran JM, Suñé-Negre JM, Navarro E. ncRNAs in Therapeutics: Challenges and Limitations in Nucleic Acid-Based Drug Delivery. International Journal of Molecular Sciences. 2021;22(21):11596–6. https://doi.org/10.3390%2Fijms222111596. DOI: https://doi.org/10.3390/ijms222111596

Ratti M, Lampis A, Ghidini M, Salati M, Mirchev MB, Valeri N, et al. MicroRNAs (miRNAs) and Long Non-Coding RNAs (lncRNAs) as New Tools for Cancer Therapy: First Steps from Bench to Bedside. Targeted Oncology. 2020;15(3):261–78. https://doi.org/10.1007/s11523-020-00717-x. DOI: https://doi.org/10.1007/s11523-020-00717-x

Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University. A Prospective, Multicenter Cohort Study of Urinary Exosome lncRNAs for Preoperative Diagnosis of Lymphatic Metastasis in Patients With Bladder Cancer. Clinical Trials. National Library of Medicine. 2023. Available from: https://clinicaltrials.gov/study/NCT05270174?term=lncRNAs&cond=Cancer&rank=1

Chang Gung Memorial Hospital. Circulating Biomarkers to Identify Thyroid Cancer. Clinical Trials. National Library of Medicine. 2020. Available from: https://clinicaltrials.gov/study/NCT04594720?term=lncRNAs&page=2&rank=12

Assiut University. Immunophenotyping and XIST Gene in AML (XIST). Clinical Trials. National Library of Medicine. 2020. Available from: https://clinicaltrials.gov/study/NCT04288739?term=lncRNAs&page=2&rank=20

Lebanese University. Exploring Cancer-Associated Thromboembolism Prognosis Biomarkers and Polymorphisms (CAT_PB). Clinical Trials. National Library of Medicine. 2023. Available from: https://clinicaltrials.gov/study/NCT06065592?term=lncRNAs&page=3&rank=24

Fathi Dizaji B. Strategies to target long non-coding RNAs in cancer treatment: progress and challenges. Egyptian Journal of Medical Human Genetics. 2020;21(1). https://doi.org/10.1186/s43042-020-00074-4. DOI: https://doi.org/10.1186/s43042-020-00074-4

Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics — challenges and potential solutions. Nature Reviews Drug Discovery. 2021;20. https://doi.org/10.1038/s41573-021-00219-z. DOI: https://doi.org/10.1038/s41573-021-00219-z

Chen B, Dragomir MP, Yang C, Li Q, Horst D, Calin GA. Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduction and Targeted Therapy. 2022;7:121. https://doi.org/10.1038/s41392-022-00975-3. DOI: https://doi.org/10.1038/s41392-022-00975-3

Zuccherato LW, Machado CMT, Magalhães WCS, Martins PR, Campos LS, Braga LC, et al. Cervical Cancer Stem-Like Cell Transcriptome Profiles Predict Response to Chemoradiotherapy. Frontiers in Oncology. 2021;11. https://doi.org/10.3389/fonc.2021.639339. DOI: https://doi.org/10.3389/fonc.2021.639339

Downloads

Publicado

16/08/2024

Como Citar

Custódio Dias Duarte, B., Rodrigues do Amaral, L., Lima Bertarini, P. L., de Souza Gomes, M., Ribeiro Queiroz, F., & da Conceição Braga , L. (2024). DESCODIFICANDO O CÓDIGO DO CÂNCER: Revelando o Potencial dos RNAS Longos não Codificantes em Oncologia. Mário Penna Journal, 2(1), 68–99. https://doi.org/10.61229/mpj.v2i1.32

Artigos mais lidos pelo mesmo(s) autor(es)