DESCODIFICANDO O CÓDIGO DO CÂNCER
Revelando o Potencial dos RNAS Longos não Codificantes em Oncologia
DOI:
https://doi.org/10.61229/mpj.v2i1.32Palavras-chave:
Câncer, lncRNA, BiomarcadorResumo
A carcinogênese prevê 30 milhões de novos casos até 2040, tornando-se a segunda principal causa de morte global. No Brasil, as doenças neoplásicas resultaram em mais de 229.000 mortes em 2020, com previsão de 704.000 novos casos para cada ano do triênio 2023-2025. Fatores como tabagismo, estresse e predisposição genética influenciam a oncogênese. Intervenções em oncologia enfrentam desafios como resistência terapêutica e heterogeneidade tumoral. Cerca de 75% do genoma humano é composto por RNAs não codificadores (ncRNAs), com foco em longos ncRNAs. Anteriormente considerados 'lixo evolutivo', os lncRNAs regulam genes e afetam o câncer. LncRNAs nucleares impactam na arquitetura da cromatina, transcrição e processamento de RNA. Eles funcionam por meio de vias complexas, modulando oncogênicos e afetando resistência ao tratamento. Vários lncRNAs, incluindo MALAT1, ANRIL, HOTAIR, GAS5, MEG3 e H19, modulam vias oncológicas e influenciam processos celulares e resistência ao tratamento. Embora promissores como biomarcadores, a complexidade estrutural dos lncRNAs dificulta sua aplicação clínica.
Downloads
Referências
World Health Organization. Cancer [Internet]. Geneva: WHO; c2023. Available from: https://www.who.int/health-topics/cancer.
Pan American Health Organization. World Cancer Day 2023: Close the care gap [Internet]. Washington, D.C: PAHO; c2023. Available from: https://www.paho.org/en/campaigns/world-cancer-day-2023-close-care-gap.
International Agency For Research On Cancer. Cancer tomorrow: Estimated number of new cases from 2020 to 2040, Both sexes, age [0-85+] All cancers [Internet]. Lyon: IARC; c2023. Available from: https://gco.iarc.fr/tomorrow/en/dataviz/isotype.
Santos M de O, Lima FC da S de, Martins LFL, Oliveira JFP, Almeida LM de, Cancela M de C. Estimativa de Incidência de Câncer no Brasil, 2023-2025. Revista Brasileira de Cancerologia. 2023;69(1). https://doi.org/10.32635/2176-9745.RBC.2023v69n1.3700. DOI: https://doi.org/10.32635/2176-9745.RBC.2023v69n1.3700
Datasus. Mortalidade geral [Internet]. Brasil: Ministério da Saúde; c2023. Available from: http://tabnet.datasus.gov.br/cgi/tabcgi.exe?sim/cnv/obt10uf.def.
Bahrami H, Tafrihi M. Global trends of cancer: The role of diet, lifestyle, and environmental factors. Cancer Innovation. 2023;2(4):290–301. https://doi.org/10.1002/cai2.76. DOI: https://doi.org/10.1002/cai2.76
Belpomme D, Irigaray P, Sasco A, Newby J, Howard V, Clapp R, et al. The growing incidence of cancer: Role of lifestyle and screening detection (Review). International Journal of Oncology. 2007;30(5). https://doi.org/10.3892/ijo.30.5.1037. DOI: https://doi.org/10.3892/ijo.30.5.1037
Underhill ML, Habin KR, Shannon KM. Perceptions of Cancer Risk, Cause, and Needs in Participants from Low Socioeconomic Background at Risk for Hereditary Cancer. Behavioral Medicine. 2016;43(4):259–67. https://doi.org/10.1080/08964289.2016.1138925. DOI: https://doi.org/10.1080/08964289.2016.1138925
Debela DT, Muzazu SG, Heraro KD, Ndalama MT, Mesele BW, Haile DC, et al. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Medicine. 2021;9:1–10. https://doi.org/10.1177/20503121211034366. DOI: https://doi.org/10.1177/20503121211034366
Mayo Clinic. Cancer treatment [Internet]. Rochester: Mayo Clinic, c2022. Available from: https://www.mayoclinic.org/tests-procedures/cancer-treatment/about/pac-20393344.
Yildizhan H, Barkan NP, Karahisar Turan S, Demiralp Ö, Özel Demiralp FD, Uslu B, et al. Chapter 1 - Treatment strategies in cancer from past to present. In Grumezescu AM, editor. Drug Targeting and Stimuli Sensitive Drug Delivery Systems [Internet]. William Andrew Publishing; 2018. p. 1–37, Elsevier. http://dx.doi.org/10.1016/B978-0-12-813689-8.00001-X. DOI: https://doi.org/10.1016/B978-0-12-813689-8.00001-X
Sant’ Anna C de C, Junior AGF, Soares P, Tuji F, Paschoal E, Chaves LC, et al. Molecular biology as a tool for the treatment of cancer. Clinical and Experimental Medicine. 2018;18(4):457–64. https://doi.org/10.1007/s10238-018-0518-1. DOI: https://doi.org/10.1007/s10238-018-0518-1
Weir J. Dissecting cancer complexity across space and time [Internet]. Science in the News (Harvard University). 2022. Available from: https://sitn.hms.harvard.edu/flash/2022/dissecting-cancer-complexity-across-space-and-time/
Maffuid K, Cao Y. Decoding the Complexity of Immune–Cancer Cell Interactions: Empowering the Future of Cancer Immunotherapy. Cancers. 2023;15(16):4188–8. https://doi.org/10.3390/cancers15164188. DOI: https://doi.org/10.3390/cancers15164188
Janku F. Tumor heterogeneity in the clinic: is it a real problem? Therapeutic Advances in Medical Oncology. 2013;6(2):43–51. https://doi.org/10.1177/1758834013517414. DOI: https://doi.org/10.1177/1758834013517414
Piraino SW, Thomas V, O’Donovan P, Furney SJ. Mutations: Driver Versus Passenger. In: Boffetta P, Hainaut P, editors. Encyclopedia of Cancer (Third Edition). Academic Press; 2019. p. 551–62. http://dx.doi.org/10.1016/B978-0-12-801238-3.65045-6. DOI: https://doi.org/10.1016/B978-0-12-801238-3.65045-6
Fisher R, Pusztai L, Swanton C. Cancer heterogeneity: Implications for Targeted Therapeutics. British Journal of Cancer. 2013;108(3):479–85. https://doi.org/10.1038/bjc.2012.581. DOI: https://doi.org/10.1038/bjc.2012.581
Hassanpour SH, Dehghani M. Review of cancer from perspective of molecular. Journal of Cancer Research and Practice. 2017;4(4):127–9. https://doi.org/10.1016/j.jcrpr.2017.07.001. DOI: https://doi.org/10.1016/j.jcrpr.2017.07.001
Huarte M. The emerging role of lncRNAs in cancer. Nature Medicine. 2015;21(11):1253–61. https://doi.org/10.1038/nm.3981. DOI: https://doi.org/10.1038/nm.3981
Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nature Reviews Clinical Oncology. 2017;15(2):81–94. https://doi.org/10.1038/nrclinonc.2017.166. DOI: https://doi.org/10.1038/nrclinonc.2017.166
Illumina Technology. Cancer Research Review: An Overview of Recent Cancer Research Publications Featuring Illumina® Technology [Internet]. c2023. Available from: https://www.illumina.com/content/dam/illumina-marketing/documents/products/research_reviews/cancer_research_review.pdf.
Frankish A, Carbonell-Sala S, Diekhans M, Jungreis I, Loveland J, Mudge J, et al. GENCODE: reference annotation for the human and mouse genomes in 2023. Nucleic Acids Research. 2022;51(D1):D942–9. https://doi.org/10.1093/nar/gkac1071. DOI: https://doi.org/10.1093/nar/gkac1071
Ahmad M, Weiswald L, Poulain L, Denoyelle C, Meryet-Figuière M. Involvement of lncRNAs in cancer cells migration, invasion and metastasis: cytoskeleton and ECM crosstalk. Journal of Experimental & Clinical Cancer Research. 2023;42(1). https://doi.org/10.1186/s13046-023-02741-x. DOI: https://doi.org/10.1186/s13046-023-02741-x
West KA, Lagos D. Long Non-Coding RNA Function in CD4+ T Cells: What We Know and What Next? Non-Coding RNA. 2019;5(3):43. https://doi.org/10.3390/ncrna5030043. DOI: https://doi.org/10.3390/ncrna5030043
Zhang R, Li X, Lu W, Zhang J, Zhu J. LncRNAs and cancer. Oncology Letters. 2016;12(2):1233–9. https://doi.org/10.3892/ol.2016.4770. DOI: https://doi.org/10.3892/ol.2016.4770
Dahariya S, Paddibhatla I, Kumar S, Raghuwanshi S, Pallepati A, Gutti RK. Long non-coding RNA: Classification, biogenesis and functions in blood cells. Molecular Immunology. 2019;112:82–92. https://doi.org/10.1016/j.molimm.2019.04.011. DOI: https://doi.org/10.1016/j.molimm.2019.04.011
Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nature Reviews Molecular Cell Biology. 2021;22(2):96–118. https://doi.org/10.1038/s41580-020-00315-9. DOI: https://doi.org/10.1038/s41580-020-00315-9
Choudhuri Supratim. Long noncoding RNAs: biogenesis, regulation, function, and their emerging significance in toxicology. Toxicology Mechanisms and Methods. 2023;1–11. https://doi.org/10.1080/15376516.2023.2197489. DOI: https://doi.org/10.1080/15376516.2023.2197489
Li G, Deng L, Huang N, Sun F. The Biological Roles of lncRNAs and Future Prospects in Clinical Application. Diseases. 2021;9(1):8. https://doi.org/10.3390/diseases9010008. DOI: https://doi.org/10.3390/diseases9010008
Rai MI, Alam M, Lightfoot DA, Gurha P, Afzal AJ. Classification and experimental identification of plant long non-coding RNAs. Genomics. 2019;111(5):997–1005. https://doi.org/10.1016/j.ygeno.2018.04.014. DOI: https://doi.org/10.1016/j.ygeno.2018.04.014
Li W, Wang YY, Xiao L, Ding J, Wang L, Wang R, et al. Mysterious long noncoding RNAs and their relationships to human disease. Frontiers in Molecular Biosciences. 2022;9. https://doi.org/10.3389/fmolb.2022.950408. DOI: https://doi.org/10.3389/fmolb.2022.950408
Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA biology. 2013;10(6):925–33. https://doi.org/10.4161/rna.24604. DOI: https://doi.org/10.4161/rna.24604
Joshi M, Rajender S. Long non-coding RNAs (lncRNAs) in spermatogenesis and male infertility. Reproductive Biology and Endocrinology. 2020;18(1). https://doi.org/10.1186/s12958-020-00660-6. DOI: https://doi.org/10.1186/s12958-020-00660-6
Sun Q, Hao Q, Prasanth KV. Nuclear Long Noncoding RNAs: Key Regulators of Gene Expression. Trends in Genetics. 2018;34(2):142–57. https://doi.org/10.1016/j.tig.2017.11.005. DOI: https://doi.org/10.1016/j.tig.2017.11.005
Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends in Cell Biology. 2011;21(6):354–61. https://doi.org/10.1016/j.tcb.2011.04.001. DOI: https://doi.org/10.1016/j.tcb.2011.04.001
Schmitz SU, Grote P, Herrmann BG. Mechanisms of long noncoding RNA function in development and disease. Cellular and Molecular Life Sciences. 2016;73(13):2491–509. https://doi.org/10.1007/s00018-016-2174-5. DOI: https://doi.org/10.1007/s00018-016-2174-5
Jayasuriya R, Ganesan K, Xu B, Ramkumar KM. Emerging role of long non-coding RNAs in endothelial dysfunction and their molecular mechanisms. Biomedicine & Pharmacotherapy. 2022;145:112421. https://doi.org/10.1016/j.biopha.2021.112421. DOI: https://doi.org/10.1016/j.biopha.2021.112421
Marchese FP, Raimondi I, Huarte M. The multidimensional mechanisms of long noncoding RNA function. Genome Biology. 2017;18(1). https://doi.org/10.1186/s13059-017-1348-2. DOI: https://doi.org/10.1186/s13059-017-1348-2
Gao N, Li Y, Li J, Gao Z, Yang Z, Li Y, et al. Long Non-Coding RNAs: The Regulatory Mechanisms, Research Strategies, and Future Directions in Cancers. Frontiers in Oncology. 2020;10. https://doi.org/10.3389/fonc.2020.598817. DOI: https://doi.org/10.3389/fonc.2020.598817
Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nature Reviews Genetics. 2015;17(1):47–62. https://doi.org/10.1038/nrg.2015.10. DOI: https://doi.org/10.1038/nrg.2015.10
Wang Kevin C, Chang Howard Y. Molecular Mechanisms of Long Noncoding RNAs. Molecular Cell. 2011;43(6):904–14. https://doi.org/10.1016/j.molcel.2011.08.018. DOI: https://doi.org/10.1016/j.molcel.2011.08.018
Balas MM, Johnson AM. Exploring the mechanisms behind long noncoding RNAs and cancer. Non-coding RNA Research. 2018;3(3):108–17. https://doi.org/10.1016/j.ncrna.2018.03.001. DOI: https://doi.org/10.1016/j.ncrna.2018.03.001
Hermans-Beijnsberger S, van Bilsen M, Schroen B. Long non-coding RNAs in the failing heart and vasculature. Non-coding RNA Research. 2018;3(3):118–30. https://doi.org/10.1016/j.ncrna.2018.04.002. DOI: https://doi.org/10.1016/j.ncrna.2018.04.002
Yu X, Zhe Z, Tang B, Li S, Tang L, Wu Y, et al. α-Asarone suppresses the proliferation and migration of ASMCs through targeting the lncRNA-PVT1/miR-203a/E2F3 signal pathway in RSV-infected rats. Acta Biochimica et Biophysica Sinica [Internet]. 2017;49(7):598–608. https://doi.org/10.1093/abbs/gmx048. DOI: https://doi.org/10.1093/abbs/gmx048
Wang J, He Z, Xu J, Chen P, Jiang J. Long noncoding RNA LINC00941 promotes pancreatic cancer progression by competitively binding miR-335-5p to regulate ROCK1-mediated LIMK1/Cofilin-1 signaling. Cell Death & Disease. 2021;12(1):1–15. https://doi.org/10.1038/s41419-020-03316-w. DOI: https://doi.org/10.1038/s41419-020-03316-w
Wu Z, Liu X, Liu L, Deng H, Zhang J, Xu Q, et al. Regulation of lncRNA expression. Cellular and Molecular Biology Letters. 2014;19(4). https://doi.org/10.2478/s11658-014-0212-6. DOI: https://doi.org/10.2478/s11658-014-0212-6
Wang C, Wang L, Ding Y, Lu X, Zhang G, Yang J, et al. LncRNA Structural Characteristics in Epigenetic Regulation. International Journal of Molecular Sciences. 2017;18(12). https://doi.org/10.3390/ijms18122659. DOI: https://doi.org/10.3390/ijms18122659
Zhang X, Wang W, Zhu W, Dong J, Cheng Y, Yin Z, et al. Mechanisms and Functions of Long Non-Coding RNAs at Multiple Regulatory Levels. International Journal of Molecular Sciences. 2019;20(22). https://doi.org/10.3390/ijms20225573. DOI: https://doi.org/10.3390/ijms20225573
Dykes IM, Emanueli C. Transcriptional and Post-transcriptional Gene Regulation by Long Non-coding RNA. Genomics, Proteomics & Bioinformatics. 2017;15(3):177–86. https://doi.org/10.1016/j.gpb.2016.12.005. DOI: https://doi.org/10.1016/j.gpb.2016.12.005
Zhang X, Hamblin MH, Yin KJ. The long noncoding RNA Malat1: Its physiological and pathophysiological functions. RNA Biology. 2017;14(12):1705–14. https://doi.org/10.1080%2F15476286.2017.1358347. DOI: https://doi.org/10.1080/15476286.2017.1358347
Kazimierczyk M, Kasprowicz MK, Kasprzyk ME, Wrzesinski J. Human Long Noncoding RNA Interactome: Detection, Characterization and Function. International Journal of Molecular Sciences. 2020;21(3):1027. https://doi.org/10.3390/ijms21031027. DOI: https://doi.org/10.3390/ijms21031027
Zhao Z, Sun W, Guo Z, Zhang J, Yu H, Liu B. Mechanisms of lncRNA/microRNA interactions in angiogenesis. Life Sciences. 2020;254:116900. https://doi.org/10.1016/j.lfs.2019.116900. DOI: https://doi.org/10.1016/j.lfs.2019.116900
Sebastian-delaCruz M, Gonzalez-Moro I, Olazagoitia-Garmendia A, Castellanos-Rubio A, Santin I. The Role of lncRNAs in Gene Expression Regulation through mRNA Stabilization. Non-Coding RNA. 2021;7(1):3. https://doi.org/10.3390%2Fncrna7010003. DOI: https://doi.org/10.3390/ncrna7010003
Fort V, Khelifi G, Hussein SMI. Long non-coding RNAs and transposable elements: A functional relationship. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2021;1868(1):118837. https://doi.org/10.1016/j.bbamcr.2020.118837. DOI: https://doi.org/10.1016/j.bbamcr.2020.118837
Ranjbar M, Heydarzadeh S, Khaniani MS, Foruzandeh Z, Seif F, Pornour M, et al. Mutual interaction of lncRNAs and epigenetics: focusing on cancer. Egyptian Journal of Medical Human Genetics. 2023;24(1). https://doi.org/10.1186/s43042-023-00404-2. DOI: https://doi.org/10.1186/s43042-023-00404-2
Begolli R, Sideris N, Giakountis A. LncRNAs as Chromatin Regulators in Cancer: From Molecular Function to Clinical Potential. Cancers. 2019;11(10):1524. https://doi.org/10.3390%2Fcancers11101524. DOI: https://doi.org/10.3390/cancers11101524
Qiu MT, Hu JW, Yin R, Xu L. Long noncoding RNA: an emerging paradigm of cancer research. Tumor Biology. 2013;34(2):613–20. https://doi.org/10.1007/s13277-013-0658-6. DOI: https://doi.org/10.1007/s13277-013-0658-6
Shah IM, Dar MA, Bhat KA, Dar TA, Ahmad F, Ahmad SM. Long Non-Coding RNAs: Biogenesis, Mechanism of Action and Role in Different Biological and Pathological Processes. In: Tutar L, editor. Recent Advances in Noncoding RNAs [Internet]. IntechOpen; 2022. p. 236. https://doi.org/10.5772/intechopen.104861. DOI: https://doi.org/10.5772/intechopen.104861
Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduction and Targeted Therapy [Internet]. 2020;5(1). https://doi.org/10.1038/s41392-020-0134-x. DOI: https://doi.org/10.1038/s41392-020-0134-x
Dzobo K, Senthebane DA, Dandara C. The Tumor Microenvironment in Tumorigenesis and Therapy Resistance Revisited. Cancers [Internet]. 2023;15(2):376. https://doi.org/10.3390/cancers15020376. DOI: https://doi.org/10.3390/cancers15020376
Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discovery [Internet]. 2022;12(1):31–46. https://doi.org/10.1158/2159-8290.cd-21-1059. DOI: https://doi.org/10.1158/2159-8290.CD-21-1059
Bhan A, Soleimani M, Mandal SS. Long Noncoding RNA and Cancer: A New Paradigm. Cancer Research. 2017;77(15):3965–81. https://doi.org/10.1158/0008-5472.can-16-2634. DOI: https://doi.org/10.1158/0008-5472.CAN-16-2634
Esposito R, Lanzós A, Uroda T, Ramnarayanan S, Büchi I, Polidori T, et al. Tumour mutations in long noncoding RNAs enhance cell fitness. Nature Communications. 2023;14(1). https://doi.org/10.1038/s41467-023-39160-7. DOI: https://doi.org/10.1038/s41467-023-39160-7
Smolarz B, Zadrożna-Nowak A, Romanowicz H. The Role of lncRNA in the Development of Tumors, including Breast Cancer. International Journal of Molecular Sciences. 2021;22(16):8427. https://doi.org/10.3390%2Fijms22168427. DOI: https://doi.org/10.3390/ijms22168427
Arratia F, Fierro C, Blanco A, Fuentes S, Nahuelquen D, Montecino M, et al. Selective Concurrence of the Long Non-Coding RNA MALAT1 and the Polycomb Repressive Complex 2 to Promoter Regions of Active Genes in MCF7 Breast Cancer Cells. Current Issues in Molecular Biology [Internet]. 2023;45(6):4735–48. https://doi.org/10.3390/cimb45060301. DOI: https://doi.org/10.3390/cimb45060301
Yoon JH, Abdelmohsen K, Gorospe M. Posttranscriptional Gene Regulation by Long Noncoding RNA. Journal of Molecular Biology [Internet]. 2013;425(19):3723–30. https://doi.org/10.1016/j.jmb.2012.11.024. DOI: https://doi.org/10.1016/j.jmb.2012.11.024
Li ZX, Zhu QN, Zhang HB, Hu Y, Wang G, Zhu YS. MALAT1: a potential biomarker in cancer. Cancer Management and Research. 2018;10:6757–68. https://doi.org/10.2147/cmar.s169406. DOI: https://doi.org/10.2147/CMAR.S169406
Zhao M, Wang S, Li Q, Ji Q, Guo P, Liu X. MALAT1: A long non coding RNA highly associated with human cancers (Review). Oncology Letters. 2018;16(1). https://doi.org/10.3892%2Fol.2018.8613. DOI: https://doi.org/10.3892/ol.2018.8613
Kong Y, Hsieh CH, Alonso LC. ANRIL: A lncRNA at the CDKN2A/B Locus With Roles in Cancer and Metabolic Disease. Frontiers in Endocrinology. 2018;9. https://doi.org/10.3389/fendo.2018.00405. DOI: https://doi.org/10.3389/fendo.2018.00405
Hajjari M, Salavaty A. HOTAIR: an oncogenic long non-coding RNA in different cancers. Cancer Biology & Medicine. 2015;12(1):1–9. https://doi.org/10.7497%2Fj.issn.2095-3941.2015.0006.
Kaur J, Salehen N, Norazit A, Rahman AA, Murad NAA, Rahman NMANAbd, et al. Tumor Suppressive Effects of GAS5 in Cancer Cells. Non-Coding RNA. 2022;8(3):39. https://doi.org/10.3390%2Fncrna8030039. DOI: https://doi.org/10.3390/ncrna8030039
Yang X, Xie Z, Lei X, Gan R. Long non coding RNA GAS5 in human cancer (Review). Oncology Letters. 2020;20(3):2587–94. https://doi.org/10.3892%2Fol.2020.11809. DOI: https://doi.org/10.3892/ol.2020.11809
He Y, Luo Y, Liang B, Ye L, Lu G, He W. Potential applications of MEG3 in cancer diagnosis and prognosis. Oncotarget. 2017;8(42):73282–95. https://doi.org/10.18632%2Foncotarget.19931. DOI: https://doi.org/10.18632/oncotarget.19931
Zhang Z, Shi S, Li J, Costa M. Long Non-Coding RNA MEG3 in Metal Carcinogenesis. Toxics. 2023;11(2):157–7. https://doi.org/10.3390/toxics11020157. DOI: https://doi.org/10.3390/toxics11020157
Ghafouri-Fard S, Esmaeili M, Taheri M. H19 lncRNA: Roles in tumorigenesis. Biomedicine & Pharmacotherapy. 2020;123:109774. https://doi.org/10.1016/j.biopha.2019.109774. DOI: https://doi.org/10.1016/j.biopha.2019.109774
Yang J, Qi M, Fei X, Wang X, Wang K. LncRNA H19: A novel oncogene in multiple cancers. International Journal of Biological Sciences. 2021;17(12):3188–208. https://doi.org/10.7150%2Fijbs.62573. DOI: https://doi.org/10.7150/ijbs.62573
Xu M, Qi P, Du X. Long non-coding RNAs in colorectal cancer: implications for pathogenesis and clinical application. Modern Pathology. 2014;27(10):1310–20. https://doi.org/10.1038/modpathol.2014.33. DOI: https://doi.org/10.1038/modpathol.2014.33
Qian Y, Shi L, Luo Z. Long Non-coding RNAs in Cancer: Implications for Diagnosis, Prognosis, and Therapy. Frontiers in Medicine. 2020;7. https://doi.org/10.3389/fmed.2020.612393. DOI: https://doi.org/10.3389/fmed.2020.612393
Chao X, Wang P, Ma X, Li Z, Xia Y, Guo Y, et al. Comprehensive analysis of lncRNAs as biomarkers for diagnosis, prognosis, and treatment response in clear cell renal cell carcinoma. Molecular Therapy - Oncolytics. 2021;22:209–18. https://doi.org/10.1016%2Fj.omto.2021.08.003. DOI: https://doi.org/10.1016/j.omto.2021.08.003
Wang J, Sun J, Yang F. The role of long non coding RNA H19 in breast cancer (Review). Oncology Letters. 2019;19(1). https://doi.org/10.3892%2Fol.2019.11093. DOI: https://doi.org/10.3892/ol.2019.11093
Quan J, Pan X, Zhao L, Li Z, Dai K, Yan F, et al. LncRNA as a diagnostic and prognostic biomarker in bladder cancer: a systematic review and meta-analysis. OncoTargets and Therapy. 2018;11:6415–24. https://doi.org/10.2147/ott.s167853. DOI: https://doi.org/10.2147/OTT.S167853
Arun G, Diermeier SD, Spector DL. Therapeutic Targeting of Long Non-Coding RNAs in Cancer. Trends in Molecular Medicine. 2018;24(3):257–77. https://doi.org/10.1016/j.molmed.2018.01.001. DOI: https://doi.org/10.1016/j.molmed.2018.01.001
Alzhrani R, Alsaab HO, Petrovici A, Bhise K, Vanamala K, Sau S, et al. Improving the therapeutic efficiency of noncoding RNAs in cancers using targeted drug delivery systems. Drug Discovery Today. 2020;25(4):718–30. https://doi.org/10.1016%2Fj.drudis.2019.11.006. DOI: https://doi.org/10.1016/j.drudis.2019.11.006
Amit D, Hochberg A. Development of targeted therapy for bladder cancer mediated by a double promoter plasmid expressing diphtheria toxin under the control of H19 and IGF2-P4 regulatory sequences. Journal of Translational Medicine. 2010;8(1). https://doi.org/10.1186/1479-5876-8-134. DOI: https://doi.org/10.1186/1479-5876-8-134
Hueso M, Mallén A, Suñé-Pou M, Aran JM, Suñé-Negre JM, Navarro E. ncRNAs in Therapeutics: Challenges and Limitations in Nucleic Acid-Based Drug Delivery. International Journal of Molecular Sciences. 2021;22(21):11596–6. https://doi.org/10.3390%2Fijms222111596. DOI: https://doi.org/10.3390/ijms222111596
Ratti M, Lampis A, Ghidini M, Salati M, Mirchev MB, Valeri N, et al. MicroRNAs (miRNAs) and Long Non-Coding RNAs (lncRNAs) as New Tools for Cancer Therapy: First Steps from Bench to Bedside. Targeted Oncology. 2020;15(3):261–78. https://doi.org/10.1007/s11523-020-00717-x. DOI: https://doi.org/10.1007/s11523-020-00717-x
Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University. A Prospective, Multicenter Cohort Study of Urinary Exosome lncRNAs for Preoperative Diagnosis of Lymphatic Metastasis in Patients With Bladder Cancer. Clinical Trials. National Library of Medicine. 2023. Available from: https://clinicaltrials.gov/study/NCT05270174?term=lncRNAs&cond=Cancer&rank=1
Chang Gung Memorial Hospital. Circulating Biomarkers to Identify Thyroid Cancer. Clinical Trials. National Library of Medicine. 2020. Available from: https://clinicaltrials.gov/study/NCT04594720?term=lncRNAs&page=2&rank=12
Assiut University. Immunophenotyping and XIST Gene in AML (XIST). Clinical Trials. National Library of Medicine. 2020. Available from: https://clinicaltrials.gov/study/NCT04288739?term=lncRNAs&page=2&rank=20
Lebanese University. Exploring Cancer-Associated Thromboembolism Prognosis Biomarkers and Polymorphisms (CAT_PB). Clinical Trials. National Library of Medicine. 2023. Available from: https://clinicaltrials.gov/study/NCT06065592?term=lncRNAs&page=3&rank=24
Fathi Dizaji B. Strategies to target long non-coding RNAs in cancer treatment: progress and challenges. Egyptian Journal of Medical Human Genetics. 2020;21(1). https://doi.org/10.1186/s43042-020-00074-4. DOI: https://doi.org/10.1186/s43042-020-00074-4
Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics — challenges and potential solutions. Nature Reviews Drug Discovery. 2021;20. https://doi.org/10.1038/s41573-021-00219-z. DOI: https://doi.org/10.1038/s41573-021-00219-z
Chen B, Dragomir MP, Yang C, Li Q, Horst D, Calin GA. Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduction and Targeted Therapy. 2022;7:121. https://doi.org/10.1038/s41392-022-00975-3. DOI: https://doi.org/10.1038/s41392-022-00975-3
Zuccherato LW, Machado CMT, Magalhães WCS, Martins PR, Campos LS, Braga LC, et al. Cervical Cancer Stem-Like Cell Transcriptome Profiles Predict Response to Chemoradiotherapy. Frontiers in Oncology. 2021;11. https://doi.org/10.3389/fonc.2021.639339. DOI: https://doi.org/10.3389/fonc.2021.639339
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Mário Penna Journal
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
- Declaro, ainda, que uma vez publicado na revista Mário Penna Journal, editada pelo Instituto Mário Penna, o mesmo jamais será submetido por mim ou por qualquer um dos demais co-autores, caso haja, a qualquer outro periódico.
- Por meio deste instrumento, em meu nome e em nome dos demais co-autores, porventura existentes, cedo os direitos autorais do referido artigo ao Instituto Mário Penna e declaro estar ciente de que a não observância deste compromisso submeterá o infrator a sanções e penas previstas na Lei de Proteção de Direitos Autorias (Nº9609, de 19/02/98).
A Revista Mário Penna Journal é licenciada sob uma licença Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional