USO DE SISTEMAS NANOESTRUTURADOS NO TRATAMENTO DO CÂNCER

DA RADIOTERAPIA À TERAPIA GENÉTICA

Autores

DOI:

https://doi.org/10.61229/mpj.v1i1.4

Palavras-chave:

Câncer, nanomedicina, terapia gênica.

Resumo

Intensa pesquisa foi deslocada para integrar a nanotecnologia no tratamento do câncer, face aos resultados insatisfatórios das abordagens terapêuticas tradicionais. A nanomedicina, campo sobreposto da nanotecnologia e da medicina, traz uma série de vantagens sobre a terapêutica convencional do câncer, incluindo radiosensibilização, multifuncionalidade, eficiência na entrega de drogas e liberação controlada de agentes quimioterápicos. Dentre as várias frentes de ação que têm sido seguidas, também a terapia gênica surge como uma proposta promissora como suporte ao tratamento do câncer, podendo ainda se aliar a sistemas nanoestrutrados para trazer um efeito sinergético, proporcionando bloqueio de marcadores metastáticos para aumentar a expectativa de vida em pacientes com estadiamento mais avançados.

Downloads

Não há dados estatísticos.

Referências

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. Ca Cancer J Clin. 2021;71(1):7-33. DOI: https://doi.org/10.3322/caac.21654

McCune JS. Rapid advances in immunotherapy to treat cancer. Wiley Online Library; 2018. p. 540-4. DOI: https://doi.org/10.1002/cpt.985

Oktaria S, Lerch ML, Rosenfeld AB, Tehei M, Corde S. In vitro investigation of the dose-rate effect on the biological effectiveness of megavoltage X-ray radiation doses. Applied Radiation and Isotopes. 2017;128:114-9. DOI: https://doi.org/10.1016/j.apradiso.2017.07.008

Van Straten D, Mashayekhi V, De Bruijn HS, Oliveira S, Robinson DJ. Oncologic photodynamic therapy: basic principles, current clinical status and future directions. Cancers. 2017;9(2):19. DOI: https://doi.org/10.3390/cancers9020019

Mellal I, Oukaira A, Kengene E, Lakhssassi A. Thermal therapy modalities for cancer treatment: A review and future perspectives. Appl Sci Res Rev. 2017;4(02):1-11. DOI: https://doi.org/10.21767/2394-9988.100064

Zhang Y, Guo L, Kong F, Duan L, Li H, Fang C, et al. Nanobiotechnology‐enabled energy utilization elevation for augmenting minimally‐invasive and noninvasive oncology thermal ablation. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2021;13(6):e1733. DOI: https://doi.org/10.1002/wnan.1733

Mun EJ, Babiker HM, Weinberg U, Kirson ED, Von Hoff DD. Tumor-Treating Fields: A Fourth Modality in Cancer TreatmentTumor-Treating Fields in Cancer Treatment. Clinical Cancer Research. 2018;24(2):266-75. DOI: https://doi.org/10.1158/1078-0432.CCR-17-1117

Tang L, Zhang A, Zhang Z, Zhao Q, Li J, Mei Y, et al. Multifunctional inorganic nanomaterials for cancer photoimmunotherapy. Cancer Communications. 2022;42(2):141-63. DOI: https://doi.org/10.1002/cac2.12255

Tiptiri-Kourpeti A, Spyridopoulou K, Pappa A, Chlichlia K. DNA vaccines to attack cancer: Strategies for improving immunogenicity and efficacy. Pharmacology & therapeutics. 2016;165:32-49. DOI: https://doi.org/10.1016/j.pharmthera.2016.05.004

Elias ST, Borges GA, Rêgo DF, Silva OE, Felipe L, Avelino S, et al. Combined paclitaxel, cisplatin and fluorouracil therapy enhances ionizing radiation effects, inhibits migration and induces G0/G1 cell cycle arrest and apoptosis in oral carcinoma cell lines. Oncology letters. 2015;10(3):1721-7. DOI: https://doi.org/10.3892/ol.2015.3458

González-López M, Gutiérrez-Cárdenas E, Sánchez-Cruz C, Hernández-Paz J, Pérez I, Olivares-Trejo J, et al. Reducing the effective dose of cisplatin using gold nanoparticles as carriers. Cancer Nanotechnology. 2020;11(1):1-15. DOI: https://doi.org/10.1186/s12645-020-00060-w

Coleman CN, Lawrence TS, Kirsch DG. Enhancing the efficacy of radiation therapy: premises, promises, and practicality. Journal of Clinical Oncology. 2014;32(26):2832. DOI: https://doi.org/10.1200/JCO.2014.57.3865

Sharma A, Goyal AK, Rath G. Recent advances in metal nanoparticles in cancer therapy. Journal of drug targeting. 2018;26(8):617-32. DOI: https://doi.org/10.1080/1061186X.2017.1400553

Holliday R. Epigenetics: a historical overview. Epigenetics. 2006;1(2):76-80. DOI: https://doi.org/10.4161/epi.1.2.2762

Korochkin L. What is epigenetics. Russian Journal of Genetics. 2006;42(9):958-65. DOI: https://doi.org/10.1134/S102279540609002X

Atlante S, Mongelli A, Barbi V, Martelli F, Farsetti A, Gaetano C. The epigenetic implication in coronavirus infection and therapy. Clinical Epigenetics. 2020;12(1):1-12. DOI: https://doi.org/10.1186/s13148-020-00946-x

Qian Z, Hu Q, Wang F, Sun X, Yin Z. Research and development of adenovirus vectored vaccines. 2020.

Bianchi L, Biondi F, Hansel K, Murgia N, Tramontana M, Stingeni L. Skin tests in urticaria/angioedema and flushing to Pfizer‐BioNTech SARS‐CoV‐2 vaccine: limits of intradermal testing. Allergy. 2021. DOI: https://doi.org/10.22541/au.161424161.19314459/v1

Caballero M, Quirce S. Excipients as potential agents of anaphylaxis in vaccines: analyzing the formulations of currently authorized COVID-19 vaccines. J Investig Allergol Clin Immunol. 2021;31(1):92-3. DOI: https://doi.org/10.18176/jiaci.0667

Vaiserman A, De Falco E, Koliada A, Maslova O, Balistreri CR. Anti-ageing gene therapy: Not so far away? Ageing Research Reviews. 2019;56:100977. DOI: https://doi.org/10.1016/j.arr.2019.100977

Hafeez MN, Celia C, Petrikaite V. Challenges towards targeted drug delivery in cancer nanomedicines. Processes. 2021;9(9):1527. DOI: https://doi.org/10.3390/pr9091527

M. Herold ID, CC Stobbe, RV Iyer, JD Chapman, D. Gold microspheres: a selective technique for producing biologically effective dose enhancement. International journal of radiation biology. 2000;76(10):1357-64. DOI: https://doi.org/10.1080/09553000050151637

Cho SH. Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study. Physics in Medicine & Biology. 2005;50(15):N163. DOI: https://doi.org/10.1088/0031-9155/50/15/N01

Ngwa W, Makrigiorgos GM, Berbeco RI. Gold nanoparticle‐aided brachytherapy with vascular dose painting: Estimation of dose enhancement to the tumor endothelial cell nucleus. Medical physics. 2012;39(1):392-8. DOI: https://doi.org/10.1118/1.3671905

Liu W, Chen B, Zheng H, Xing Y, Chen G, Zhou P, et al. Advances of Nanomedicine in Radiotherapy. Pharmaceutics. 2021;13(11):1757. DOI: https://doi.org/10.3390/pharmaceutics13111757

Shukurov I, Mohamed MS, Mizuki T, Palaninathan V, Ukai T, Hanajiri T, et al. Biological Synthesis of Bioactive Gold Nanoparticles from Inonotus obliquus for Dual Chemo-Photothermal Effects against Human Brain Cancer Cells. International journal of molecular sciences. 2022;23(4):2292. DOI: https://doi.org/10.3390/ijms23042292

Aljohani FS, Hamed MT, Bakr BA, Shahin YH, Abu-Serie MM, Awaad AK, et al. In vivo bio-distribution and acute toxicity evaluation of greenly synthesized ultra-small gold nanoparticles with different biological activities. Scientific reports. 2022;12(1):1-20. DOI: https://doi.org/10.1038/s41598-022-10251-7

Porret E, Le Guével X, Coll J-L. Gold nanoclusters for biomedical applications: toward in vivo studies. Journal of Materials Chemistry B. 2020;8(11):2216-32. DOI: https://doi.org/10.1039/C9TB02767J

Alhussan A, Bozdoğan EPD, Chithrani DB. Combining gold nanoparticles with other radiosensitizing agents for unlocking the full potential of cancer radiotherapy. Pharmaceutics. 2021;13(4):442. DOI: https://doi.org/10.3390/pharmaceutics13040442

Han O, Bromma K, Palmerley N, Bido AT, Monica M, Alhussan A, et al. Nanotechnology Driven Cancer Chemoradiation: Exploiting the Full Potential of Radiotherapy with a Unique Combination of Gold Nanoparticles and Bleomycin. Pharmaceutics. 2022;14(2):233. DOI: https://doi.org/10.3390/pharmaceutics14020233

Nikdouz A, Namarvari N, Shayan RG, Hosseini A. Comprehensive comparison of theranostic nanoparticles in breast cancer. American Journal of Clinical and Experimental Immunology. 2022;11(1):1.

Hainfeld JF, Dilmanian FA, Zhong Z, Slatkin DN, Kalef-Ezra JA, Smilowitz HM. Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Physics in Medicine & Biology. 2010;55(11):3045. DOI: https://doi.org/10.1088/0031-9155/55/11/004

Păduraru DN, Ion D, Niculescu A-G, Mușat F, Andronic O, Grumezescu AM, et al. Recent Developments in Metallic Nanomaterials for Cancer Therapy, Diagnosing and Imaging Applications. Pharmaceutics. 2022;14(2):435. DOI: https://doi.org/10.3390/pharmaceutics14020435

Gharibkandi NA, Gierałtowska J, Wawrowicz K, Bilewicz A. Nanostructures as radionuclide carriers in auger electron therapy. Materials. 2022;15(3):1143. DOI: https://doi.org/10.3390/ma15031143

Doerfler W. DNA methylation—a regulatory signal in eukaryotic gene expression. Journal of General Virology. 1981;57(1):1-20. DOI: https://doi.org/10.1099/0022-1317-57-1-1

Doerfler W. DNA methylation and gene activity. Annual review of biochemistry. 1983;52(1):93-124. DOI: https://doi.org/10.1146/annurev.bi.52.070183.000521

Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nature reviews genetics. 2002;3(6):415-28. DOI: https://doi.org/10.1038/nrg816

Kan RL, Chen J, Sallam T. Crosstalk between epitranscriptomic and epigenetic mechanisms in gene regulation. Trends in Genetics. 2021. DOI: https://doi.org/10.1016/j.tig.2021.06.014

Rugo HS, Jacobs I, Sharma S, Scappaticci F, Paul TA, Jensen-Pergakes K, et al. The promise for histone methyltransferase inhibitors for epigenetic therapy in clinical oncology: a narrative review. Advances in therapy. 2020;37(7):3059-82. DOI: https://doi.org/10.1007/s12325-020-01379-x

Lani-Louzada R, Dias MS, Linden R, Ribas VT, Petrs-Silva H. Gene Therapy Strategies for Glaucomatous Neurodegeneration. Current Gene Therapy. 2021;21(5):362-81. DOI: https://doi.org/10.2174/1566523221666210126152000

Barbosa BG, Cassimiro AVNA, Rocha BGS, Alvarenga BM, Birbrair A, Ribas VT. Pericyte Biology in the Optic Nerve and Retina. Current Tissue Microenvironment Reports. 2022:1-14. DOI: https://doi.org/10.1007/s43152-022-00036-5

Mern DS, Walsen T, Beierfuß A, Thomé C. Animal models of regenerative medicine for biological treatment approaches of degenerative disc diseases. Experimental Biology and Medicine. 2021;246(4):483-512. DOI: https://doi.org/10.1177/1535370220969123

Ramburrun P, Kumar P, Choonara YE, Bijukumar D, du Toit LC, Pillay V. A review of bioactive release from nerve conduits as a neurotherapeutic strategy for neuronal growth in peripheral nerve injury. BioMed research international. 2014;2014. DOI: https://doi.org/10.1155/2014/132350

Belete TM. The current status of gene therapy for the treatment of cancer. Biologics: targets & therapy. 2021;15:67. DOI: https://doi.org/10.2147/BTT.S302095

Du X, Wang J, Zhou Q, Zhang L, Wang S, Zhang Z, et al. Advanced physical techniques for gene delivery based on membrane perforation. Drug Delivery. 2018;25(1):1516-25. DOI: https://doi.org/10.1080/10717544.2018.1480674

Herrero MJ, Sendra L, Miguel A, Aliño SF. Physical methods of gene delivery. Safety and Efficacy of Gene-Based Therapeutics for Inherited Disorders: Springer; 2017. p. 113-35. DOI: https://doi.org/10.1007/978-3-319-53457-2_6

Li X, Ruddy B, Taberner A. Characterization of needle-assisted jet injections. Journal of Controlled Release. 2016;243:195-203. DOI: https://doi.org/10.1016/j.jconrel.2016.10.010

Smolders S, Kessels S, Smolders SM-T, Poulhes F, Zelphati O, Sapet C, et al. Magnetofection is superior to other chemical transfection methods in a microglial cell line. Journal of Neuroscience Methods. 2018;293:169-73. DOI: https://doi.org/10.1016/j.jneumeth.2017.09.017

Suda T, Liu D. Hydrodynamic gene delivery: its principles and applications. Molecular Therapy. 2007;15(12):2063-9. DOI: https://doi.org/10.1038/sj.mt.6300314

Darr JA, Zhang J, Makwana NM, Weng X. Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions. Chemical reviews. 2017;117(17):11125-238. DOI: https://doi.org/10.1021/acs.chemrev.6b00417

Riley MK, Vermerris W. Recent advances in nanomaterials for gene delivery—a review. Nanomaterials. 2017;7(5):94. DOI: https://doi.org/10.3390/nano7050094

Van Bruggen C, Hexum JK, Tan Z, Dalal RJ, Reineke TM. Nonviral gene delivery with cationic glycopolymers. Accounts of Chemical Research. 2019;52(5):1347-58. DOI: https://doi.org/10.1021/acs.accounts.8b00665

Yang R, Chen F, Guo J, Zhou D, Luan S. Recent advances in polymeric biomaterials-based gene delivery for cartilage repair. Bioactive Materials. 2020;5(4):990-1003. DOI: https://doi.org/10.1016/j.bioactmat.2020.06.004

Zylberberg C, Gaskill K, Pasley S, Matosevic S. Engineering liposomal nanoparticles for targeted gene therapy. Gene therapy. 2017;24(8):441-52. DOI: https://doi.org/10.1038/gt.2017.41

Bouard D, Alazard‐Dany N, Cosset FL. Viral vectors: from virology to transgene expression. British journal of pharmacology. 2009;157(2):153-65. DOI: https://doi.org/10.1038/bjp.2008.349

Goswami R, Subramanian G, Silayeva L, Newkirk I, Doctor D, Chawla K, et al. Gene therapy leaves a vicious cycle. Frontiers in oncology. 2019:297. DOI: https://doi.org/10.3389/fonc.2019.00297

Ji W, Sun B, Su C. Targeting microRNAs in cancer gene therapy. Genes. 2017;8(1):21. DOI: https://doi.org/10.3390/genes8010021

Li T, Kang G, Wang T, Huang H. Tumor angiogenesis and anti‑angiogenic gene therapy for cancer. Oncology letters. 2018;16(1):687-702. DOI: https://doi.org/10.3892/ol.2018.8733

Ali S, Kjeken R, Niederlaender C, Markey G, Saunders TS, Opsata M, et al. The European medicines agency review of Kymriah (Tisagenlecleucel) for the treatment of acute lymphoblastic leukemia and diffuse large B‐cell lymphoma. The oncologist. 2020;25(2):e321-e7. DOI: https://doi.org/10.1634/theoncologist.2019-0233

Oluwole OO, Davila ML. At The Bedside: Clinical review of chimeric antigen receptor (CAR) T cell therapy for B cell malignancies. Journal of leukocyte biology. 2016;100(6):1265-72. DOI: https://doi.org/10.1189/jlb.5BT1115-524R

Pettitt D, Arshad Z, Smith J, Stanic T, Holländer G, Brindley D. CAR-T cells: a systematic review and mixed methods analysis of the clinical trial landscape. Molecular Therapy. 2018;26(2):342-53. DOI: https://doi.org/10.1016/j.ymthe.2017.10.019

Xia Y, Li X, Sun W. Applications of recombinant adenovirus-p53 gene therapy for cancers in the clinic in China. Current Gene Therapy. 2020;20(2):127-41. DOI: https://doi.org/10.2174/1566523220999200731003206

Zhang W-W, Li L, Li D, Liu J, Li X, Li W, et al. The first approved gene therapy product for cancer Ad-p53 (Gendicine): 12 years in the clinic. Human gene therapy. 2018;29(2):160-79. DOI: https://doi.org/10.1089/hum.2017.218

Chen S, Gao C, Wu Y, Huang Z. Identification of prognostic miRNA signature and lymph node metastasis-related key genes in cervical cancer. Frontiers in pharmacology. 2020;11:544. DOI: https://doi.org/10.3389/fphar.2020.00544

Cohen PA, Jhingran A, Oaknin A, Denny L. Cervical cancer. The Lancet. 2019;393(10167):169-82. DOI: https://doi.org/10.1016/S0140-6736(18)32470-X

Liu M, Hu Y, Chen G. The antitumor effect of gene-engineered exosomes in the treatment of brain metastasis of breast cancer. Frontiers in Oncology. 2020;10:1453. DOI: https://doi.org/10.3389/fonc.2020.01453

Sun K, Xu Y, Zhang L, Niravath P, Darcourt J, Patel T, et al. A Phase 2 Trial of Enhancing Immune Checkpoint Blockade by Stereotactic Radiation and In Situ Virus Gene Therapy in Metastatic Triple Negative Breast Cancer. Clinical Cancer Research. 2022. DOI: https://doi.org/10.1158/1078-0432.CCR-22-0622

Downloads

Publicado

24/02/2023

Como Citar

Geraldo, J. M., & Montaño Valencia , C. J. (2023). USO DE SISTEMAS NANOESTRUTURADOS NO TRATAMENTO DO CÂNCER: DA RADIOTERAPIA À TERAPIA GENÉTICA. Mário Penna Journal, 1(1), 18–33. https://doi.org/10.61229/mpj.v1i1.4